New Mars Forums

Official discussion forum of The Mars Society and MarsNews.com

You are not logged in.

Announcement

Announcement: We've recently made changes to our user database and have removed inactive and spam users. If you can not login, please re-register.

#51 2019-04-28 06:56:01

SpaceNut
Administrator
From: New Hampshire
Registered: 2004-07-22
Posts: 15,037

Re: Fuel Cell Development, Application, Prospects

This is the home version less NH3 cracker of course for the hydrogen powered system.

Backyard Fuel cell

A back of an envelope drawn out plan to extend batteries and solar power saving the surplus in the bank for later. With that thought they used solar panels and an electrolyzer to generate hydrogen which was stored in a 500 gallon propane tank holding enough to be a reserve for 14 days worth of power when put through a fuel cell. With add on more tanks to gain even longer periods of time for use. The total system cost was $50,000 to be able to build this system.

This system was done due to remote power to an island, noisy power generators and a desire to reduce cost.

Article indicates 5 easy steps of which step one is a drawing of the plan that is approved for the state and zoning codes for the location.

1. Purchase a 1.6Kw solar array that cost around $13,400
2. Two laboratory grade electrolyzers for a cost of $7,900 each (Hogen GC 600 unit) with a capability of making 0.3 gallons of water a minute exit to a stoage tank capable of hold 200 psi.
3. learn about stainless steel piping for all inter connects with cleaning via nitrogen and to force out the air in the 500 gallon storage tank.
4. The fuel cell is a 140 lb 48 volt and an AC inverter for home use at 110V.
5. Automation of the controls of battery and electrolyzer cycling at 20 min sun and then powered by the fuel cell. Data to capture would be voltage, tank volume and any sniffer sensor leak detection.

Of course these are over simplified...



Brown gas vehicle injection system
http://fuel-efficient-vehicles.org/ener … age_id=927

Discussion details the particulars of such a sytem used in a vehicle and conditional plus mix ratio of gas to fuel for mileage change with video clips.

Offline

#52 2019-04-28 08:17:42

tahanson43206
Member
Registered: 2018-04-27
Posts: 567

Re: Fuel Cell Development, Application, Prospects

For kbd512 #50 ... thank you for your support of the importance of competition to deliver better value for customers.  It was a nice prequel to SpaceNut's discovery of the island power system! 

For SpaceNut ... thank you for another outstanding discovery, perfectly matched to this topic!  That system would appear (at first reading) to have potential to work well for many homes in the suburbs around the US, and certainly in the vast regions between cities.

Addition of an NH3 cracker would be a complementary feature, which would ultimately increase the market for NH3, and thus the incentives for capitalists to take the risk of building supply and distribution systems.

(th)

Offline

#53 2019-04-28 16:33:03

kbd512
Moderator
Registered: 2015-01-02
Posts: 2,717

Re: Fuel Cell Development, Application, Prospects

tahanson43206,

To be clear, I think professional mass manufacture of tested / certified fuel cells will be required for reliable operation.  There may be certain individuals like SpaceNut who have the knowledge and skills required to assemble their own fuel cells using professionally manufactured components or subassemblies, but this is not something you can just make in your garage and expect to achieve good results from.  There are many millions of people who assemble piston engines in their garages from factory components, but nobody I know actually forges their own pistons or casts their own engine blocks, for example.  The more sophisticated builders may have a small lathe for minor machining or blueprinting of components, but even desktop CNC equipment is cost-prohibitive.  The same applies to customized electric motors used in automotive or hobby applications.

I guess it depends on your definition of manufacturing.  The best aerospace example are personal aircraft.  Thousands of people build their own aircraft because it's so much less expensive than purchasing a new aircraft, but those folks don't generally make Aluminum sheet, steel tubing, fabrics, fibers and resins used in composites, or their own engines.  Similarly, few of us make our own tools.  We've industrialized those processes to reduce duplication of effort that increases time, cost, and/or specialized knowledge required.

If fuel cell components, apart from Platinum group metal catalysts more practical for aerospace applications than home or automotive power, are mass manufactured and therefore much cheaper, then combining fuel cell technology with photovoltaic panels presents the possibility of people running their own home micro-grids and maintaining their own motor vehicles.  That is "taking the power back" from the monopolies, if you'll pardon the pun.

BMW has manufactured their i3 electric vehicles in such a way that someone completely unskilled in body repair work can repair cosmetic damage to the body work of their own car from minor fender benders.  The carbon fiber chassis has mounting tabs for the plastic body panels.  It's as simple as popping snap-on plastic body panels on or off of the vehicle.  To my way of thinking, that's brilliant.

We can see how BMW has begun using aerospace fabrication procedures for lightweight automotive subassemblies:

Rail Section and Apron Replacement With Rivet Bonding BMW i3

Here's a rather comprehensive manufacturing process video:

BMW i3 Factory Production Tour

Edit:

To understand why it is that you can't simply "build" a GM engine in your garage, watching the following video:

Building GM's most powerful Engine Ever, the 650hp LT4 V8!

Are you so skilled that you can grind and polish a crank shaft to within the thickness of a red blood cell?  Maybe, but probably not.  That is the level of precision that modern robotics, backed by human quality control checks, are capable of producing.

Could GM make home and automotive fuel cells at Tonawanda?  There's no doubt in my mind that they could.

Last edited by kbd512 (2019-04-28 16:53:19)

Offline

#54 2019-04-28 17:41:04

tahanson43206
Member
Registered: 2018-04-27
Posts: 567

Re: Fuel Cell Development, Application, Prospects

For kbd512 re #53 ...

Your post here contained multiple subtopics ....Thanks (in particular) for the glimpse of BMW 's innovation to allow for (what sounds like) home mechanic maintenance of body panels!

However, your reply to SpaceNut about building your own fuel cell system inspired me to see what is happening in the marketplace for fuel cell systems for home use.  The Google results were more than I have time to investigate right now, but one citation is quite encouraging.  The company involved is apparently hoping for sales of 5000 units in Europe in the near term, with expansion to the UK and the US on the horizon.

The units on offer run with natural gas, and provide both heat and electricity without the noise of a generator, and (surprising to me) with LESS maintenance required than existing gas furnace systems.  I am skeptical of the claim of five years between services, because (like many folks), I've been "trained" to expect twice yearly visits by my friendly local heating/cooling company.

(th)

Offline

#55 2019-04-28 17:59:20

SpaceNut
Administrator
From: New Hampshire
Registered: 2004-07-22
Posts: 15,037

Re: Fuel Cell Development, Application, Prospects

Thanks for the encouragement to seek out the how to build...

Today was making rocker panels by hand for both sides of the vehicle as they had quite a bit of rot.

Lets see if I can find some more numbers in cost and ability for what we can from these.

https://fuelcellsetc.com/2015/03/what-y … ered-home/

Since there isn’t a commercially available option, custom systems can cost $35,000 – $100,000+.

https://fuelcellsetc.com/products-services/fuel-cells/

solar for 8 hours a day and that you will consume 2 kW for the other 16 hrs you will need:

26 LPM Hydrogen (from the 2 kW FC Specifications) * 60 min/hr * 16 hrs/day = 24,960 L per day.

Assuming you will be consuming the full 2 kW the entire time.  If you operate at less than 2 kW you will obviously consume less fuel.

This is the equivalent to approximately (5) K sized bottles of Hydrogen.  Not unmanageable

For example, if you were billed for 909 kWh in a typical 30 day month (the US average, according to US Energy Information) that would be:

909 kWh / 30 days / 24 hrs/day = 1.26 kW

https://www.quora.com/How-do-I-make-a-P … EM-at-home

Light-weight, Low Cost PEM Fuel Cell Stacks

Was sort of surprised from how little hydrogen was from water electrolysis.
http://waterpoweredcar.com/fuelcell.html

Ninety-six percent of the hydrogen used today comes from this reforming process, with natural gas the primary "feedstock" (48 percent) for the "reformation," followed by oil (30 percent) and coal (18 percent). The small remainder (4 percent) comes from electrolysis, which is a process of separating water into hydrogen and oxygen using electricity.

Offline

#56 2019-04-29 12:34:08

tahanson43206
Member
Registered: 2018-04-27
Posts: 567

Re: Fuel Cell Development, Application, Prospects

For SpaceNut #55 ...

The first link you provided led to an interesting (to me at least) blog series about home installations of fuel cells, with mention of the difficulties companies are having developing in the present market conditions.

Despite the difficulties reported, I get the impression the fuel cell investments were successful as long as the providers remained in business.

https://fuelcellsetc.com/2015/03/what-y … ered-home/

(th)

Offline

#57 2019-04-29 17:35:33

SpaceNut
Administrator
From: New Hampshire
Registered: 2004-07-22
Posts: 15,037

Re: Fuel Cell Development, Application, Prospects

I noted that issue as well in the fuel cell technology of companies not looking at the residential need.

Which brought me back to the noisy generators and why have they not enclosed them to muffle the sound that one would make since they do not come with the exhaust muffling systems on them.

Another thought is you could retrofit a regular gas generator unit to be able to run on natural gas, propane, methane which is very simular and why not hydrogen as well as that would make sense to me to do. It also is an on demand system since you do not need much of a buffer of hydrogen to fire any unit up since you could have a little gas on hand and then just switch over the fuel type you are using.

Not promoting any product just giving reference costs for hydrogen generators....

Z0xIp_hcpEx_.JPG

$17394.18/ea for Flow Rate: 500mL/min.

Not buying many of them...do it yourself is looking even better.

Offline

#58 2019-05-04 21:48:20

SpaceNut
Administrator
From: New Hampshire
Registered: 2004-07-22
Posts: 15,037

Re: Fuel Cell Development, Application, Prospects

Posted about e-drone use of hydrogen composite fuel tanks to aid in extended flight times in other topic. Ballard Launches Turnkey Fuel Cell Solutions to Power Commercial Unmanned Aerial Vehicles

Offline

#59 2019-05-17 21:02:53

kbd512
Moderator
Registered: 2015-01-02
Posts: 2,717

Re: Fuel Cell Development, Application, Prospects

Here's a promising new way to store H2:

New material could unlock potential for hydrogen powered vehicle revolution

From the article:

Scientists have discovered a new material that could hold the key to unlocking the potential of hydrogen powered vehicles.

As the world looks towards a gradual move away from fossil fuel powered cars and trucks, greener alternative technologies are being explored, such as electric battery powered vehicles.

Another 'green' technology with great potential is hydrogen power. However, a major obstacle has been the size, complexity, and expense of the fuel systems -- until now.

An international team of researchers, led by Professor David Antonelli of Lancaster University, has discovered a new material made from manganese hydride that offers a solution. The new material would be used to make molecular sieves within fuel tanks -- which store the hydrogen and work alongside fuel cells in a hydrogen powered 'system'.

The material, called KMH-1 (Kubas Manganese Hydride-1), would enable the design of tanks that are far smaller, cheaper, more convenient and energy dense than existing hydrogen fuel technologies, and significantly out-perform battery-powered vehicles.

Professor Antonelli, Chair in Physical Chemistry at Lancaster University and who has been researching this area for more than 15 years, said: "The cost of manufacturing our material is so low, and the energy density it can store is so much higher than a lithium ion battery, that we could see hydrogen fuel cell systems that cost five times less than lithium ion batteries as well as providing a much longer range -- potentially enabling journeys up to around four or five times longer between fill-ups."

The material takes advantage of a chemical process called Kubas binding. This process enables the storage of hydrogen by distancing the hydrogen atoms within a H2 molecule and works at room temperature. This eliminates the need to split, and bind, the bonds between atoms, processes that require high energies and extremes of temperature and need complex equipment to deliver.

The KMH-1 material also absorbs and stores any excess energy so external heat and cooling is not needed. This is crucial because it means cooling and heating equipment does not need to be used in vehicles, resulting in systems with the potential to be far more efficient than existing designs.

The sieve works by absorbing hydrogen under around 120 atmospheres of pressure, which is less than a typical scuba tank. It then releases hydrogen from the tank into the fuel cell when the pressure is released.

The researchers' experiments show that the material could enable the storage of four times as much hydrogen in the same volume as existing hydrogen fuel technologies. This is great for vehicle manufactures as it provides them with flexibility to design vehicles with increased range of up to four times, or allowing them to reducing the size of the tanks by up to a factor of four.

Although vehicles, including cars and heavy goods vehicles, are the most obvious application, the researchers believe there are many other applications for KMH-1.

"This material can also be used in portable devices such as drones or within mobile chargers so people could go on week-long camping trips without having to recharge their devices," said Professor Antonelli. "The real advantage this brings is in situations where you anticipate being off grid for long periods of time, such as long haul truck journeys, drones, and robotics. It could also be used to run a house or a remote neighbourhood off a fuel cell."

The technology has been licenced by the University of South Wales to a spin-out company part owned by Professor Antonelli, called Kubagen.

Offline

#60 2019-05-18 08:34:32

SpaceNut
Administrator
From: New Hampshire
Registered: 2004-07-22
Posts: 15,037

Re: Fuel Cell Development, Application, Prospects

Yes, MgH2 contains 7.66% by weight of hydrogen and has been studied as a potential hydrogen storage medium.

Manganese Hydride is also a form of a battery which is rechargeable
http://www.mining.com/web/manganese-the … advantage/

Offline

Board footer

Powered by FluxBB